
√ 
Deputy CTO 

streaming data transformation á la carte
streams

2

Think of “the concept of streams” as

• ephemeral, time-dependent, sequences of elements

• possibly unbounded in length

• in essence: transformation & transportation of data

«You cannot step twice into the same stream.
For as you are stepping in, other waters are ever

flowing on to you.» — Heraclitus

#protip

• Simple message-oriented programming model for building  
Reactive applications

• Usable from both Java and Scala

• Raised abstraction levels
• Never think in terms of shared state, memory visibility, threads, locks,

concurrent collections, thread notifications
• High CPU utilization, low latency, high throughput, and elasticity as result

• Applications are made resilient through supervisor
hierarchies

3

4

actors

• Akka's unit of computation is called an Actor
• Akka Actors are purely reactive components:
• an address
• a mailbox
• a current behavior
• local storage

• Scheduled to run when sent a message
• Each actor has a parent, handling its failures
• Each actor can have 0..N “child” actors

5

« 2500 nodes × millions of actors per GB RAM = a lot»
— √

actors

• An actor processes a message at a time
• Multiple-producers & Single-consumer

• The overhead per actor is about ~450bytes
• Run millions of actors on commodity hardware

• Akka Cluster currently handles ~2500 nodes

actors

streams

i m m u t a b l e

REUSABLE
c o m p o s a b l e
c o o r d i n a t e d  
asynchronous 
transformations

Flows

9

streams: Linear transformations

• Time-Agnostic

• map, mapConcat, filter, collect, grouped, drop, take, groupBy, …

• Time-Sensitive

• takeWithin, dropWithin, groupedWithin, …

• Rate-Detached

• expand, conflate, buffer, …

• Asynchronous

• mapAsync, mapAsyncUnordered, …

Sources

11

streams: Sources

• org.reactivestreams.Publisher[T]

• () => Iterator[T] / immutable.Iterable[T]

• scala.concurrent.Future[T]

• actorPublisher / subscriber / actorRef

• single/empty/failed/timer/…

• …or create your own!

Sinks

13

streams: Sinks

• org.reactivestreams.Subscriber[T]

• foreach / fold / onComplete

• actorSubscriber / actorRef /

• ignore / publisher / fanoutPublisher /
head / cancelled / …

• … or create your own!

Fan-In

Fan-Out
&

• merge

• mergePreferred

• concat

• zip & zipWith

• … or create your own!

15

streams: Nonlinear transformations

• broadcast

• route

• balance

• unzip

• … or create your own!

Fan-tastic!

17

streams: Nonlinear transformations

• BidiFlow

• FlowGraph.Builder

• Custom Stages

• Coming: Octopus (“Kraken”) / N:M-way

• … and more!

OI

19

streams: Output & Input

• Akka Http

• Akka Tcp Stream

• InputStreamSource & OutputStreamSink

• Reactive Streams interop

• … create some of your own!

Materialization

21

streams: Materialization

• Akka Streams separate the what from the how

• declarative Source/Flow/Sink DSL to create a blueprint

• ActorFlowMaterializer turns this into running Actors

• enables customizable materialization strategies

• optimization

• verification / validation

• distributed deployment

• only Akka Actors (for now)

live

time
demo

23

Klang’s
conjecture

«If you cannot solve a problem without programming;
 you cannot solve a problem with programming.»

Getting data across
an asynchronous
b o u n d a r y

Getting data across
an asynchronous
b o u n d a r y  
with non-blocking 
back pressure

29

Requirements Push Pull

support potentially unbounded sequences :) :)

sender runs separately from receiver :) :)
rate of reception may vary from rate of sending :) :)

dropping elements should be a choice and not a necessity :(:)

minimal (if any) overhead in terms of latency and throughput :) :(

Comparing Push vs Pull

!

!

&
30

Supply

Demand

31

Publisher Subscriber

data

demand

• “push” when subscriber is faster

• “pull” when publisher is faster

• switches automatically between both

• batching demand allows batching ops

32

Dynamic
Push–Pull

33

Requirements Push Pull Both

support potentially unbounded sequences :) :) :)

sender runs separately from receiver :) :) :)
rate of reception may vary from rate of sending :) :) :)

dropping elements should be a choice and not a necessity :(:) :)

minimal (if any) overhead in terms of latency and throughput :) :(:)

Comparing Push vs Pull vs Both

Stream splitting

34

demand

data

splitting the data means merging the demand

Stream merging

35

merging the data means splitting the demand

Reactive
Streams
Initiative

T
H
E

The traits of Reactive

38

• define minimal interfaces—essentials only
• outline rigorous specification of semantics
• create a TCK for verification of implementation
• ensure complete freedom for many idiomatic APIs
• verify that the specification is efficiently implementable

«Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with

non-blocking back pressure on the JVM.»
— reactive-streams.org

http://reactive-streams.org

Collaboration between Engineers

39

• Björn Antonsson – Typesafe Inc.

• Gavin Bierman – Oracle Inc.

• Jon Brisbin – Pivotal Software Inc.

• George Campbell – Netflix, Inc

• Ben Christensen – Netflix, Inc

• Mathias Doenitz – spray.io

• Marius Eriksen – Twitter Inc.

• Tim Fox – Red Hat Inc.

• Viktor Klang – Typesafe Inc.

• Dr. Roland Kuhn – Typesafe Inc.

• Doug Lea – SUNY Oswego

• Stephane Maldini – Pivotal Software Inc.

• Norman Maurer – Red Hat Inc.

• Erik Meijer – Applied Duality Inc.
• Todd Montgomery – Kaazing Corp.

• Patrik Nordwall – Typesafe Inc.

• Johannes Rudolph – spray.io

• Endre Varga – Typesafe Inc.

ExcitingOpportunities

Opportunity: Self-tuning back pressure

41

• Each processing stage can know
• Latency between requesting more and getting more
• Latency for internal processing
• Behavior of downstream demand
• Latency between satisfying and receiving more
• Trends in requested demand (patterns)

• Lock-step
• N-buffered
• N + X-buffered
• “chaotic”

Opportunity: Operation elision

42

• Compile-time, using Scala Macros
• fold ++ take(n where n > 0) == fold
• drop(0) == identity
• <any> ++ identity == <any>

• Run-time, using intra-stage simplification
• map ++ dropUntil(cond) ++ take(N)
• map ++ identity ++ take(N)
• map ++ take(N)

Opportunity: Operation fusion

43

• Compile-time, using Scala Macros
• filter ++ map == collect

• Run-time, using intra-stage simplification
• Rule: <any> ++ identity == <any> 

Rule: identity ++ <any> == <any>
• filter ++ dropUntil(cond) ++ map
• filter ++ identity ++ map == collect

Opportunity: Execution optimization

44

• synchronous intra-stage execution N steps then
trampoline and/or give control to other Thread /
Flow

45

Try Akka Streams: (1.0-RC3) 
https://github.com/typesafehub/activator-akka-stream-scala

References

Reactive Streams for JVM 
https://github.com/reactive-streams/reactive-streams-jvm

https://github.com/typesafehub/activator-akka-stream-scala
https://github.com/typesafehub/activator-akka-stream-scala

©Typesafe 2015 – All Rights Reserved

√

Reactive Streamsprotocol

48

public interface Publisher<T> {
 public void subscribe(Subscriber<T> s);
}
public void Subscription {
 public void request(long n);
 public void cancel();
}
public interface Subscriber<T> {
 public void onSubscribe(Subscription s);
 public void onNext(T t);
 public void onError(Throwable t);
 public void onComplete();
}
public interface Processor<T, R>
 extends Subscriber<T>, Publisher<R> { }

How does it connect?

49

SubscriberPublisher

subscribe(subscriber)

onSubscribe(subscription)

How does data flow?

50

SubscriberPublisher

subscription.request(1)

onNext(element)

subscription.request(3)

onNext(element)

subscription.request(1)

How does data flow?

51

SubscriberPublisher

onNext(element)

onNext(element)

subscription.request(2)

onNext(element)

onNext(element)

How does it complete?

52

SubscriberPublisher

subscription.request(1)

onNext(element)

onComplete()

onNext(element)

What if it fails?

53

SubscriberPublisher

subscription.request(1)

onNext(element)

subscription.request(5)

onError(exception)

☠

live

time
demo

