
√ 
Deputy CTO 

streaming data transformation á la carte
streams
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Think of “the concept of streams” as

• ephemeral, time-dependent, sequences of elements 

• possibly unbounded in length 

• in essence: transformation & transportation of data

«You cannot step twice into the same stream. 
For as you are stepping in, other waters are ever 

flowing on to you.» — Heraclitus

#protip



• Simple message-oriented programming model for building  
Reactive applications 

• Usable from both Java and Scala 

• Raised abstraction levels 
• Never think in terms of shared state, memory visibility, threads, locks, 

concurrent collections, thread notifications  
• High CPU utilization, low latency, high throughput, and elasticity as result 

• Applications are made resilient through supervisor 
hierarchies
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actors

• Akka's unit of computation is called an Actor  
• Akka Actors are purely reactive components: 
• an address 
• a mailbox 
• a current behavior 
• local storage 

• Scheduled to run when sent a message 
• Each actor has a parent, handling its failures 
• Each actor can have 0..N “child” actors
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« 2500 nodes × millions of actors per GB RAM = a lot» 
— √

actors

• An actor processes a message at a time 
• Multiple-producers & Single-consumer 

• The overhead per actor is about ~450bytes 
• Run millions of actors on commodity hardware 

• Akka Cluster currently handles ~2500 nodes

actors



streams



i  m  m  u  t  a  b  l  e 

REUSABLE 
c o m p o s a b l e 
c o o r d i n a t e d  
asynchronous 
transformations



Flows
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streams: Linear transformations

• Time-Agnostic 

• map, mapConcat, filter, collect, grouped, drop, take, groupBy, … 

• Time-Sensitive 

• takeWithin, dropWithin, groupedWithin, … 

• Rate-Detached 

• expand, conflate, buffer, … 

• Asynchronous 

• mapAsync, mapAsyncUnordered, …



Sources
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streams: Sources

• org.reactivestreams.Publisher[T] 

• () => Iterator[T] / immutable.Iterable[T] 

• scala.concurrent.Future[T] 

• actorPublisher / subscriber / actorRef 

• single/empty/failed/timer/… 

• …or create your own!



Sinks
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streams: Sinks

• org.reactivestreams.Subscriber[T] 

• foreach / fold / onComplete 

• actorSubscriber / actorRef /  

• ignore / publisher / fanoutPublisher / 
head / cancelled / … 

• … or create your own!



Fan-In

Fan-Out
&



• merge 

• mergePreferred 

• concat 

• zip & zipWith 

• … or create your own!
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streams: Nonlinear transformations

• broadcast 

• route 

• balance 

• unzip 

• … or create your own!



Fan-tastic!
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streams: Nonlinear transformations

• BidiFlow 

• FlowGraph.Builder 

• Custom Stages 

• Coming: Octopus (“Kraken”) / N:M-way 

• … and more!



OI
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streams: Output & Input

• Akka Http 

• Akka Tcp Stream 

• InputStreamSource & OutputStreamSink 

• Reactive Streams interop 

• … create some of your own!



Materialization
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streams: Materialization

• Akka Streams separate the what from the how 

• declarative Source/Flow/Sink DSL to create a blueprint 

• ActorFlowMaterializer turns this into running Actors 

• enables customizable materialization strategies 

• optimization 

• verification / validation 

• distributed deployment 

• only Akka Actors (for now)



live 

time
demo
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Klang’s 
conjecture

«If you cannot solve a problem without programming; 
  you cannot solve a problem with programming.»



Getting data across 
an asynchronous 
b  o  u  n  d  a  r  y









Getting data across 
an asynchronous 
b  o  u  n  d  a  r  y  
with non-blocking 
back pressure
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Requirements Push Pull

support potentially unbounded sequences    :)    :)

sender runs separately from receiver    :)    :)
rate of reception may vary from rate of sending    :)    :)

dropping elements should be a choice and not a necessity    :(    :)

minimal (if any) overhead in terms of latency and throughput    :)    :(

Comparing Push vs Pull

!

!



&
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Supply

Demand
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Publisher Subscriber

data

demand



• “push” when subscriber is faster 

• “pull” when publisher is faster 

• switches automatically between both 

• batching demand allows batching ops

32

Dynamic
Push–Pull
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Requirements Push Pull Both

support potentially unbounded sequences    :)    :)    :)

sender runs separately from receiver    :)    :)    :)
rate of reception may vary from rate of sending    :)    :)    :)

dropping elements should be a choice and not a necessity    :(    :)    :)

minimal (if any) overhead in terms of latency and throughput    :)    :(    :)

Comparing Push vs Pull vs Both



Stream splitting
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demand

data

splitting the data means merging the demand



Stream merging
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merging the data means splitting the demand



Reactive 
Streams 
Initiative

T 
H 
E



The traits of Reactive
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• define minimal interfaces—essentials only 
• outline rigorous specification of semantics 
• create a TCK for verification of implementation 
• ensure complete freedom for many idiomatic APIs 
• verify that the specification is efficiently implementable

«Reactive Streams is an initiative to provide a 
standard for asynchronous stream processing with 

non-blocking back pressure on the JVM.» 
— reactive-streams.org

http://reactive-streams.org


Collaboration between Engineers
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• Björn Antonsson – Typesafe Inc. 

• Gavin Bierman – Oracle Inc. 

• Jon Brisbin – Pivotal Software Inc. 

• George Campbell – Netflix, Inc 

• Ben Christensen – Netflix, Inc 

• Mathias Doenitz – spray.io 

• Marius Eriksen – Twitter Inc. 

• Tim Fox – Red Hat Inc. 

• Viktor Klang – Typesafe Inc.

• Dr. Roland Kuhn – Typesafe Inc. 

• Doug Lea – SUNY Oswego 

• Stephane Maldini – Pivotal Software Inc. 

• Norman Maurer – Red Hat Inc. 

• Erik Meijer – Applied Duality Inc. 
• Todd Montgomery – Kaazing Corp. 

• Patrik Nordwall – Typesafe Inc. 

• Johannes Rudolph – spray.io 

• Endre Varga – Typesafe Inc.



ExcitingOpportunities



Opportunity: Self-tuning back pressure
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• Each processing stage can know 
• Latency between requesting more and getting more 
• Latency for internal processing 
• Behavior of downstream demand 
• Latency between satisfying and receiving more 
• Trends in requested demand (patterns) 

• Lock-step 
• N-buffered 
• N + X-buffered 
• “chaotic”



Opportunity: Operation elision
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• Compile-time, using Scala Macros 
• fold ++ take(n where n > 0) == fold 
• drop(0) == identity 
• <any> ++ identity == <any> 

• Run-time, using intra-stage simplification 
• map ++ dropUntil(cond) ++ take(N) 
• map ++ identity ++ take(N) 
• map ++ take(N)



Opportunity: Operation fusion
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• Compile-time, using Scala Macros 
• filter ++ map == collect 

• Run-time, using intra-stage simplification 
• Rule: <any> ++ identity == <any> 

Rule: identity ++ <any> == <any> 
• filter ++ dropUntil(cond) ++ map 
• filter ++ identity ++ map == collect



Opportunity: Execution optimization
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• synchronous intra-stage execution N steps then 
trampoline and/or give control to other Thread / 
Flow
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Try Akka Streams: (1.0-RC3) 
https://github.com/typesafehub/activator-akka-stream-scala

References

Reactive Streams for JVM 
https://github.com/reactive-streams/reactive-streams-jvm

https://github.com/typesafehub/activator-akka-stream-scala
https://github.com/typesafehub/activator-akka-stream-scala


©Typesafe 2015 – All Rights Reserved

√



Reactive    Streamsprotocol
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public interface Publisher<T> { 
  public void subscribe(Subscriber<T> s); 
} 
public void Subscription { 
  public void request(long n); 
  public void cancel(); 
} 
public interface Subscriber<T> { 
  public void onSubscribe(Subscription s); 
  public void onNext(T t); 
  public void onError(Throwable t); 
  public void onComplete(); 
} 
public interface Processor<T, R> 
  extends Subscriber<T>, Publisher<R> { }



How does it connect?
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SubscriberPublisher

subscribe(subscriber)

onSubscribe(subscription)



How does data flow?
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SubscriberPublisher

subscription.request(1)

onNext(element)

subscription.request(3)

onNext(element)

subscription.request(1)



How does data flow?
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SubscriberPublisher

onNext(element)

onNext(element)

subscription.request(2)

onNext(element)

onNext(element)



How does it complete?
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SubscriberPublisher

subscription.request(1)

onNext(element)

onComplete()

onNext(element)



What if it fails?

53

SubscriberPublisher

subscription.request(1)

onNext(element)

subscription.request(5)

onError(exception)

☠
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