
Copyright 2014 Kodewerk Ltd. All rights reserved

Do Your GC Logs
Speak To You

Visualizing G1GC, the Garbage First
Garbage Collector

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm About Me

•Consultant (www.kodewerk.com)

•performance tuning and training

•Helped establish
www.javaperformancetuning.com

•Member of Java Champion program

•Other stuff... (google is you care to)

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Disclaimer

The resemblance of any opinion,
recommendation or comment made
during this presentation to
performance tuning advice is
merely coincidental.

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Why collect GC logs?

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

GC logs contain the information you
need to make informed choices about
how to tune Java Memory managemet

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

What is the performance impact of
logging GC in production?

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

How do I get a GC log?

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

-verbose:gc (not recommended)

-Xloggc:gc.log (recommended)

-XX:+UseGCLogFileRotation (7.0 feature)

-XX:NumberOfGCLogFiles=10

-XX:GCLogFileSize=1g

-XX:+PrintDateStamps

-XX:+PrintGCDetails

-XX:+PrintTenuringDistribution

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Generational GC

Split memory into different memory pools

Objects allocated in young and eventually
moved to tenured

Pools cleaned via mark/sweep collector

re
se

rv
ed

tenurededen S0 S1

re
se

rv
ed

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Mark Sweep Review

Meet some condition to trigger a
collection cycle

Call to safe-point application threads

Find all GC roots

Mark all live objects by tracing
references from roots

Reclaim unreachable or evict survivors

fix all dangling pointers

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm What is a Safe-Point?

A point in a threads execution when it
can safely be interrupted

salt code with calls to safe-point

capture application threads

Threads are blocked until released

Frequent safe-pointing creates
Scheduling pressure

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm What is a GC Root?

external inte
rnal

int
ern

al

Two types of pointers

internal fully contained in a memory pool

external, originates outside a memory pool

GC root

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Where’s Waldo?

Aside from Perm gen, globals, registers,
stack frames, locks, VM data structures
roots for;

tenured are in young

young are in tenured

re
se

rv
ed

tenurededen S0 S1

re
se

rv
ed

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm What’s in a Pause

Safe-pointing (2x context switch)

scan for roots

objects that are live by definition

mark everything reachable from a root

trace live objects

sweep (reallocate by copy or compaction)

finding and repoint dangling pointers

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Challenges

Applications need to process more data
than they ever had to

translates to larger working sets

GC pause dominated by working set
size

scan for roots cost dominated by
heap size

larger heaps and working set == longer
pauses

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Evacuating collectors are good at
ignoring dead objects

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Not so good as heap size and
corresponding live set size grow

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

How can we maximize MMU so that we
can work with larger working sets
without suffering the pause

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Disentangle pause time from heap
size?

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Ignore long lived objects?

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Regional Collectors

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Regional Collectors

Several implementations of (sort of)
regional collectors

Oracle G1GC

IBM Balance

Azul C4

Redhat Shenandoah

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm G1 Heap Structure

Heap divided into
~2000 uniformly sized
regions

size ranges from
1m-32m

size determined
ergonomically

-XX:G1HeapRegionSize=<n>

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Region Sets

At any time any region
can belong to;

eden
survivor
old
humungous

really
really
big

un-used
!

regions are taken from
and returned to un-used

O

O O

O
O

S

S

E

S

EE
HHH

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Region Sets

Un-used is the list of free regions

Objects are created in Eden

Survivor and old serves the same
purpose as they do in a generational
heap

Objects larger than 50% of a region are
humungous

combine contiguous regions to create
a larger space

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Remember Set (RSet)

Set of cards that track external pointers
into its region

record pointer to RSet

mark RSet as mutated

Cost

<5% of memory

write memory barrier (visibility)

indirection

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Building a CSet

Find regions “ripe” for collection

empty is trivial

almost empty is cheap

almost full is expensive

Build a set (CSet) that may be
evacuated (swept) within a given pause
time over a time interval

may not be able to comply

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm G1 Phases

Young gen mark and sweep

evacuate all reachable objects to a
new region

per region evacuation pauses

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm G1 Characteristics

Mostly self tuning

max heap size

specify a pause time over an interval

sizes adaptively to try to meet pause
time goal

Generational

young gen

old gen mark

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm GC Phases

Mostly concurrent mark sweep

young gen collector is mark and sweep

old gen collector is mark only

old gen regions are swept by young
gen collector

Fully evacuating

no need for compaction

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.170: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 82912 bytes, 82912 total
- age 2: 230888 bytes, 313800 total
, 0.00333500 secs]
 [Parallel Time: 2.8 ms]
 [GC Worker Start (ms): 63170.2 63170.2 63170.2 63170.3 63170.3 63172.7 63172.8 63172.8
 Avg: 63171.2, Min: 63170.2, Max: 63172.8, Diff: 2.5]
 [Ext Root Scanning (ms): 1.3 1.8 1.2 1.0 1.1 0.0 0.0 0.0
 Avg: 0.8, Min: 0.0, Max: 1.8, Diff: 1.8]
 [Update RS (ms): 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.2, Diff: 0.2]
 [Processed Buffers : 0 0 4 3 5 0 0 0
 Sum: 12, Avg: 1, Min: 0, Max: 5, Diff: 5]
 [Scan RS (ms): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0]
 [Object Copy (ms): 1.0 0.6 1.1 1.1 1.1 0.0 0.0 0.0
 Avg: 0.6, Min: 0.0, Max: 1.1, Diff: 1.1]
 [Termination (ms): 0.2 0.2 0.3 0.2 0.2 0.1 0.0 0.0
 Avg: 0.2, Min: 0.0, Max: 0.3, Diff: 0.3]
 [Termination Attempts : 4 1 6 2 4 1 1 1
 Sum: 20, Avg: 2, Min: 1, Max: 6, Diff: 5]
 [GC Worker End (ms): 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8
 Avg: 63172.8, Min: 63172.8, Max: 63172.8, Diff: 0.0]
 [GC Worker (ms): 2.6 2.6 2.6 2.5 2.5 0.1 0.0 0.0
 Avg: 1.6, Min: 0.0, Max: 2.6, Diff: 2.6]
 [GC Worker Other (ms): 0.2 0.2 0.2 0.2 0.3 2.6 2.7 2.8
 Avg: 1.2, Min: 0.2, Max: 2.8, Diff: 2.6]
 [Clear CT: 0.1 ms]
 [Other: 0.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.4 ms]
 [Ref Enq: 0.0 ms]
 [Free CSet: 0.0 ms]
 [Eden: 3072K(3072K)->0B(2048K) Survivors: 1024K->1024K Heap: 6999K(10M)->5288K(10M)]
 [Times: user=0.02 sys=0.00, real=0.00 secs]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.170: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 82912 bytes, 82912 total
- age 2: 230888 bytes, 313800 total
, 0.00333500 secs]

Pure evacuation pause of young gen
regions lasting 0.00333500 seconds started
63.170 seconds after VM startup

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.170: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 82912 bytes, 82912 total
- age 2: 230888 bytes, 313800 total
, 0.00333500 secs]

Desired survivor size is 524288 bytes

Max tenuring threshold is 15

Calculated threshold is 15

reflects bytes @ ag1 + age 2 < desired

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Eden: 3072K(3072K)->0B(2048K) Survivors: 1024K->1024K
Heap: 6999K(10M)->5288K(10M)]
[Times: user=0.01 sys=0.00, real=0.00 secs]

Evacuation changes memory consumption

reported on

Report format for Eden, survivor, and
total heap

before(size)->after(size)

old must be calculated  

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.170: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 82912 bytes, 82912 total
- age 2: 230888 bytes, 313800 total
, 0.00333500 secs]
 [Parallel Time: 2.8 ms]
 [GC Worker Start (ms): 63170.2 63170.2 63170.2 63170.3 63170.3 63172.7 63172.8 63172.8
 Avg: 63171.2, Min: 63170.2, Max: 63172.8, Diff: 2.5]
 [Ext Root Scanning (ms): 1.3 1.8 1.2 1.0 1.1 0.0 0.0 0.0
 Avg: 0.8, Min: 0.0, Max: 1.8, Diff: 1.8]
 [Update RS (ms): 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.2, Diff: 0.2]
 [Processed Buffers : 0 0 4 3 5 0 0 0
 Sum: 12, Avg: 1, Min: 0, Max: 5, Diff: 5]
 [Scan RS (ms): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0]
 [Object Copy (ms): 1.0 0.6 1.1 1.1 1.1 0.0 0.0 0.0
 Avg: 0.6, Min: 0.0, Max: 1.1, Diff: 1.1]
 [Termination (ms): 0.2 0.2 0.3 0.2 0.2 0.1 0.0 0.0
 Avg: 0.2, Min: 0.0, Max: 0.3, Diff: 0.3]
 [Termination Attempts : 4 1 6 2 4 1 1 1
 Sum: 20, Avg: 2, Min: 1, Max: 6, Diff: 5]
 [GC Worker End (ms): 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8
 Avg: 63172.8, Min: 63172.8, Max: 63172.8, Diff: 0.0]
 [GC Worker (ms): 2.6 2.6 2.6 2.5 2.5 0.1 0.0 0.0
 Avg: 1.6, Min: 0.0, Max: 2.6, Diff: 2.6]
 [GC Worker Other (ms): 0.2 0.2 0.2 0.2 0.3 2.6 2.7 2.8
 Avg: 1.2, Min: 0.2, Max: 2.8, Diff: 2.6]
 [Clear CT: 0.1 ms]
 [Other: 0.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.4 ms]
 [Ref Enq: 0.0 ms]
 [Free CSet: 0.0 ms]
 [Eden: 3072K(3072K)->0B(2048K) Survivors: 1024K->1024K Heap: 6999K(10M)->5288K(10M)]
 [Times: user=0.02 sys=0.00, real=0.00 secs]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Parallel Time: 2.8 ms]

Total elapsed time for parallel worker
threads

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[GC Worker Start (ms): 63170.2 63170.2 63170.2 63170.3 63170.3
63172.7 63172.8 63172.8
 Avg: 63171.2, Min: 63170.2, Max: 63172.8, Diff: 2.5]
.....
[GC Worker End (ms): 63172.8 63172.8 63172.8 63172.8
63172.8 63172.8 63172.8 63172.8
 Avg: 63172.8, Min: 63172.8, Max: 63172.8, Diff: 0.0]

Time stamp for when each GC worker
started and then ended

Statistical summary of record

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[GC Worker (ms): 2.6 2.6 2.6 2.5 2.5 0.1 0.0 0.0
 Avg: 1.6, Min: 0.0, Max: 2.6, Diff: 2.6]
[GC Worker Other (ms): 0.2 0.2 0.2 0.2 0.3 2.6 2.7 2.8
 Avg: 1.2, Min: 0.2, Max: 2.8, Diff: 2.6]

Total concurrent time from start and stop
record

Other is activity not accounted for in the
summary records

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Ext Root Scanning (ms): 1.3 1.8 1.2 1.0 1.1 0.0 0.0 0.0
 Avg: 0.8, Min: 0.0, Max: 1.8, Diff: 1.8]

Per-thread time to scan for roots

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Update RS (ms): 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.2, Diff: 0.2]
 [Processed Buffers : 0 0 4 3 5 0 0 0
 Sum: 12, Avg: 1, Min: 0, Max: 5, Diff: 5]

Per-thread time to process update buffers

Mutator threads are still working

updates to RSet maintained in an update
buffer

Number of buffers processed by each thread

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Scan RS (ms): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0]

Per-thread time to process RSets

[Object Copy (ms): 1.0 0.6 1.1 1.1 1.1 0.0 0.0 0.0
 Avg: 0.6, Min: 0.0, Max: 1.1, Diff: 1.1]

Per-thread time spent copying objects in
the CSet to other regions

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Termination (ms): 0.2 0.2 0.3 0.2 0.2 0.1 0.0 0.0
 Avg: 0.2, Min: 0.0, Max: 0.3, Diff: 0.3]
 [Termination Attempts : 4 1 6 2 4 1 1 1
 Sum: 20, Avg: 2, Min: 1, Max: 6, Diff: 5]

Per-thread time of offer to terminate

Follow up is number of termination
attempts

maybe offered work from other threads
queue

work stealing

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Termination (ms): 0.2 0.2 0.3 0.2 0.2 0.1 0.0 0.0
 Avg: 0.2, Min: 0.0, Max: 0.3, Diff: 0.3]
 [Termination Attempts : 4 1 6 2 4 1 1 1
 Sum: 20, Avg: 2, Min: 1, Max: 6, Diff: 5]

Per-thread time of offer to terminate

Follow up is number of termination
attempts

maybe offered work from other threads
queue

work stealing

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

 [Clear CT: 0.1 ms]

Clear card tables

serial pause event

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

[Other: 0.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.4 ms]
 [Ref Enq: 0.0 ms]
 [Free CSet: 0.0 ms]

Other tasks

reference processing

reference enqueuing

freeing the collection set data
structure

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.170: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 82912 bytes, 82912 total
- age 2: 230888 bytes, 313800 total
, 0.00333500 secs]
 [Parallel Time: 2.8 ms]
 [GC Worker Start (ms): 63170.2 63170.2 63170.2 63170.3 63170.3 63172.7 63172.8 63172.8
 Avg: 63171.2, Min: 63170.2, Max: 63172.8, Diff: 2.5]
 [Ext Root Scanning (ms): 1.3 1.8 1.2 1.0 1.1 0.0 0.0 0.0
 Avg: 0.8, Min: 0.0, Max: 1.8, Diff: 1.8]
 [Update RS (ms): 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.2, Diff: 0.2]
 [Processed Buffers : 0 0 4 3 5 0 0 0
 Sum: 12, Avg: 1, Min: 0, Max: 5, Diff: 5]
 [Scan RS (ms): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0]
 [Object Copy (ms): 1.0 0.6 1.1 1.1 1.1 0.0 0.0 0.0
 Avg: 0.6, Min: 0.0, Max: 1.1, Diff: 1.1]
 [Termination (ms): 0.2 0.2 0.3 0.2 0.2 0.1 0.0 0.0
 Avg: 0.2, Min: 0.0, Max: 0.3, Diff: 0.3]
 [Termination Attempts : 4 1 6 2 4 1 1 1
 Sum: 20, Avg: 2, Min: 1, Max: 6, Diff: 5]
 [GC Worker End (ms): 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8 63172.8
 Avg: 63172.8, Min: 63172.8, Max: 63172.8, Diff: 0.0]
 [GC Worker (ms): 2.6 2.6 2.6 2.5 2.5 0.1 0.0 0.0
 Avg: 1.6, Min: 0.0, Max: 2.6, Diff: 2.6]
 [GC Worker Other (ms): 0.2 0.2 0.2 0.2 0.3 2.6 2.7 2.8
 Avg: 1.2, Min: 0.2, Max: 2.8, Diff: 2.6]
 [Clear CT: 0.1 ms]
 [Other: 0.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.4 ms]
 [Ref Enq: 0.0 ms]
 [Free CSet: 0.0 ms]
 [Eden: 3072K(3072K)->0B(2048K) Survivors: 1024K->1024K Heap: 6999K(10M)->5288K(10M)]
 [Times: user=0.02 sys=0.00, real=0.00 secs]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Old space initial-mark has been
piggybacked onto the evacuation phase

Internalizes roots to a region

63.233: [GC pause (young)
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age 1: 1275728 bytes, 1275728 total
- age 2: 81624 bytes, 1357352 total
- age 3: 230888 bytes, 1588240 total
 (initial-mark), 0.00522500 secs]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Scan root regions directly reachable from
the survivors of the initial mark phase

0.0006690 concurrent time time

63.239: [GC concurrent-root-region-scan-start]
63.239: [GC concurrent-root-region-scan-end, 0.0006690]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Concurrent marking phase

0.0066900 concurrent time

63.239: [GC concurrent-mark-start]
63.246: [GC concurrent-mark-end, 0.0066900 sec]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

63.246: [GC remark 63.247: [GC ref-proc, 0.0000480 secs],
0.0014730 secs]
 [Times: user=0.01 sys=0.00, real=0.00 secs]

Stop-the-world remark

starts @ 63.246

duration: 0.0014730

Includes reference processing

starts @ 63.247

duration: 0.0000480

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

341M->315M(384M)

occupancy before, after, configured

Stop the world 0.0046641 seconds

38.300: [GC cleanup 341M->315M(384M), 0.0046641 secs]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm

Return empty regions back to unused

Concurrent time of 0.0000749 seconds

80.197: [GC concurrent-cleanup-start]
80.197: [GC concurrent-cleanup-end, 0.0000740]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Other Records

Global marking stack was full

heap is too small

scan of old started too late

must start over

expensive failure

[GC concurrent-mark-reset-for-overflow]

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm JIT Collection Trigger

Heap occupancy at which a mixed
collection will be triggered

defaults to 45%

collection needs to finish before heap
is full

expensive failure

too frequent yields high overheads
with low returns

InitiatingHeapOccupancyPercent

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm CSet Inclusion

 Occupancy above which a region will be
considered a poor candidate for reaping

defaults to 90%

lower values may eliminate lower
occupancy regions that are also not
good candidates for reaping

G1OldCSetRegionLiveThresholdPercentage

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Abort Criteria

default 5%

Used to abort collection of poor
candidate regions

G1HeapWastePercent

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Mixed GC Frequency

Ratio of mixed to total collections

default value of 8

1 of 8 collections should be mixed

maybe too high a frequency

least favorite design decision

no feedback to justify triggering

G1MixedGCTarget

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm GC Jitter???

FX application to flip screen between black
and white on each vsync

60hz signal==16ms update interval

10Gig heap, 10ms over 200ms pause time goal

never hit it!

today it could

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm GC Tuning Goals

Eliminate GC interference

improve user response times

improve throughput

Reduce hardware requirements

use less CPU

use smaller heap

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm App with Memory Leak

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm App with Memory Leak

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 2 -mx8G

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 2 -mx8G

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 2 -mx8G

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 5 -mx8G +++

Run 1 Reminder

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 5 -mx8G +++

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Run 5 -mx8G +++

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm CMS Run -mx8G

Run 1 Reminder

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm CMS Run -mx8G

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm CMS Run -mx8G

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Flags and Stuff

-XX:+UseG1GC

-mx, -mn

-XX:MaxGCPauseMillis=200

-XX:GCPauseIntervalMillis=1000

-XX:InitiatingHeapOccupancyPercent=45

-XX:NewRatio=2

-XX:SurvivorRatio=8

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Flags and Stuff

-XX:MaxTenuringThreshold=15

-XX:ParallelGCThreads=n

-XX:ConcGCThreads=n

-XX:G1ReservePercent=n

-XX:G1HeapRegionSize=n

numerous other flags that get hairy

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Flags and Stuff

Does not respond well to aggressive
pause time goals

Setting -mn, SurvivorRatio, or a number
of other flags *will* cause the pause
time to be ignored

stubborn to tuning efforts

Copyright 2014 Kodewerk Ltd. All rights reserved

Kodewerk
Java Performance Servicestm Wanna learn more?

www.kodewerk.com

Jav
a P

erf
orm

anc
e T

uni
ng,

Jun
e 2

-5,
Chan

ia G
ree

ce

