
SCALING GILT
From Monolith Ruby App to Distributed

Scala Micro-Services

QCon - Brooklyn - 2014
Yoni (Jonathan) Goldberg

http://yonigoldberg.com/

- GiltDirect, Sale Personalization, Loyalty,
SEO, Post-purchase, Login/Registration

- MIT CS BS/Meng | Google | IBM | IDF

- Israel | Brooklyn | Coffee | JS/Node |
Arduino | Running | Kite Surfing | Poker

The lessons and challenges that we
had/have with

micro-service architecture

Flash Sales Business
Founded in 2007

Top 50 Internet-Retailer
~150 Engineers

WHAT IS GILT?

ANOTHER WAY TO LOOK AT
GILT

THE CLASSIC
STARTUP STORY

THE EARLY DAYS
2007 - Ruby on Rails
the hottest new thing

The goal was to get to market fast

We were able to handle our traffic
pretty well

UNTIL LOUBOUTIN CAME TO
GILT

TECHNOLOGY PAIN POINTS -
2009

Spike required to launch 1,000s of ruby
processes
Postgres was overloaded
Routing traffic between ruby processes
sucked

|Note to self| hide from the ruby fans

DEV PAIN POINTS
1000 Models/Controllers, 200K LOC,
100s of jobs
Lots of contributors + no ownership
Difficult deployments with long
integration cycles
Hard to identify root causes

WE NEEDED TO SOLVE
THE PROBLEM FAST

THREE THINGS HAPPENED
Started the transition to the JVM
M(a/i)cro-Service Era Started
Dedicated data stores

WHY JVM?
Widely adopted
Stable
Better support for concurrency
Better GC vs MRI

FIRST 10 SERVICES

We solved 90% of our arch scaling
problem

But not the Dev points

SOLVED PAIN POINTS
Spike required to launch 1,000s of ruby
processes
Postgres was overloaded
Routing traffic between ruby processes
sucked

STILL OPEN PAIN POINTS
New services became semi-monolithic
1000 Models/Controllers, 200K LOC,
100s of jobs
Lots of contributors + no ownership
Difficult deployments with long
integration cycles

WHY WE DOUBLED DOWN ON
MICRO-SERVICES

Empower teams and ownership
Smaller scope
Simpler and Easier deployments and
rollbacks

As of last week we have around
400 services in Prod

We began the transition to Scala and
Play

LOSA - Lots Of Small (Web) Apps

Same as micro-services but for web-apps

DEMO

why the increase?

APP BOOTSTRAP
rake bootstrap:admin-web # Bootstrap a admin-web service
 rake bootstrap:babylon-docs # Bootstrap a babylon-docs service
 rake bootstrap:client-server-core # Bootstrap a client-server-core service
 rake bootstrap:jersey-java # Bootstrap a jersey-java service
 rake bootstrap:jersey-scala # Bootstrap a jersey-scala service
 rake bootstrap:play # Bootstrap a play service
 rake bootstrap:play-ui-build # Bootstrap a play-ui-build service
 rake bootstrap:sbt-library # Bootstrap a sbt-library service
 rake bootstrap:schema # Bootstrap a schema service

HOW TO DEFINE A
MICROSERVICE?
Functionality scope

Number of devs involved

NEW CHALLENGES
Deployments and Testing
(Functional/Integration)
Dev/Integration Environments
Who owns this service!?
Monitoring

ON DEPLOYMENTS AND
TESTING

 "Testing is HARD" -
the dev that sits on your left

THE CHALLENGES THAT WE
FACED:

Hard to execute functional tests between
services
Frustrating to deploy semi-manually
(Capistrano)
Scary to deploy other teams services

SBT
Motivation: Scala adaption
Complex Scala syntax
Cool features: ~test, shell, console
Hard to debug

GILT-SBT-BUILD
Simple config for all the services
Pulls many plugins:
[nexus, testing, RPMs, run scripts,
Monitoring, SemVer, ...]
Custom commands (e.g 'sbt release')

ION-CANNON + SBT
Run tests on dedicated Env
Supports Canary releases
Easy rollbacks
Integrated health checks

On Dev/Integration Environments
The hardware is not strong enough
No one wants to compile 20 services
Service Dependencies

EACH TEAM HAS A STAGING
ENV

SERVICE_PORTS=[
 4001, #listing-service
 8235, #svc-user-set
 9420, #svc-free-fall
 7895, #svc-Loyalty
 8155, #web-loyalty
 9410, #web inventory status
 7898, #admin-loyalty
 7899, #notification
 7102, #rouge
 9530, #svc-component
 6802, #svc-waitlist-submit
 4066, #svc-action-sale

STAGING DIFFICULTIES:
Hard to keep all the services up to date
Maxed our staging env capacities
Requires to have internet connection for
some of the services (e.g LOSA-apps)

Dependency Fun [Demo]

THE FUTURE
GO Reactive

http://www.reactivemanifesto.org/

Docker
An extension to Linux Containers

(LXC)
Decentralization
Simple Configurations
Much lighter than a VM
Immutable
Supports multiple platforms

ON OWNERSHIP
 "code stays much longer than people" - SB

CODE OWNERSHIP

CURRENT APPROACH
Code Review!Code Review!Code
Review!
Team owns services, not individual
developers
Ownership transfer

DATA OWNERSHIP

WE TRANSITIONED TO MICRO-
DBS

Third of the services have their own
MongoDB | Postgres | Voldemort

MANAGE MICRO-RELATIONAL
DBS

SCHEMA EVOLUTION
MANAGER

https://github.com/gilt/schema-
evolution-manager

https://github.com/gilt/schema-evolution-manager

PRINCIPLES OF
SCHEMA EVOLUTION

MANAGER
Can manage the schema evolutions in a
Git repo
Schema changes are deployed as tar flies
No rollbacks
Schema changes are required to be
incremental

ON MONITORING

THE TOOLS WE USE

graphite / openTSDB

Cheat Sheet
Your organization has > 30 developers
Deployments and integrations are
difficult [You need a team for that]
You can abstractly separate features and
parts of your site
Special hardware or performance needs
for some features

MAIN TAKEAWAYS
Simplicity - Do you really need it?
MicroServices promise works for most cases
As of 2014 - You will need to invest in Tools!
We feel that it was the right choice for us

WHAT'S NEXT ?
BUILD YOUR NEXT FEATURE

IN A NEW SERVICE

@yoni_goldberg
jgoldberg@gilt.com

QUESTION TIME
We are hiring...

www.yonigoldberg.com

http://www.yonigoldberg.com/

SCALA BREAK

Why switch to Scala from Java
Object-Functional Programming
Akka
Immutability that leads to easier
concurrency
Great libraries: like Salat, Scalaz
Less boilerplate code - e.g Case classes,
App
Scala's Collections

Traits
Cake Pattern
Console
SBT (in scala, release process)
Option

