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how can you build your own DynamoDB Scale service?
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let’s start with a story about a 
little company called amazon.com
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once upon a time...  
(in 2000)

episode 1
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a few thousand miles away...  
(seattle)
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amazon.com - a rapidly growing Internet based 
retail business relied on relational databases
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we had 1000s of independent services
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each service managed its state in RDBMs
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RDBMs are actually kind of cool
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first of all... SQL!!



@ksshams@swami_79

so it is easier to query..
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easier to learn
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as versatile as a swiss army knife

complex queries  key-value access 

transactionsanalytics
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RDBMs are too similar to 
Swiss Army Knives
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but sometimes.. swiss army knifes..  
can be more than what you bargained for
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partitioning

easy
re-partitioning

hard..
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so we bought  
bigger boxes...
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Q4 was hard-work at Amazon

benchmark 
new hardware 

migrate to new 
hardware 

repartition 
databases 

pray  
... 
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RDBMs availability challenges..
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then.. (in 2005)

episode 2
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amazon dynamo
predecessor to  dynamoDB

specialist tool :  

•limited querying capabilities 

•simpler consistency

replicated DHT with consistent hashing 
optimistic replication 
“sloppy quorum” 
anti-entropy mechanism 
object versioning
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dynamo had many benefits

• higher availability 
• we traded it off for eventual consistency  

• incremental scalability 
• no more repartitioning  
• no need to architect apps for peak 
• just add boxes 

• simpler querying model ==>> predictable performance
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but dynamo was not perfect...

lacked strong consistency
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but dynamo was not perfect...

scaling was easier, but...
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but dynamo was not perfect...

steep learning curve
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but dynamo was not perfect...

dynamo was a product ... ==>> not a service...
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then.. (in 2012)

episode 3
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“Even though we have years of experience with large, complex 
NoSQL architectures, we are happy to be finally out of the 
business of managing it ourselves.” - Don MacAskill, CEO

• NoSQL database 
• fast & predictable performance 
• seamless scalability 
• easy administration

DynamoDB



@ksshams@swami_79

build services not software!!
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amazon.com’s experience with services
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how do you create a successful service?
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with great services, comes great responsibility
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DynamoDB Goals and Philosophies

never compromise on durability

scale is our problem

easy to use

scale in rps
consistent and low latencies
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Sacred Tenets in Services

plan for success - plan for  scalability

don’t compromise durability for performance

plan for failures - fault -tolerance is key

consistent performance is important

design - think of blast radius

insist on correctness
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fault tolerance is a lesson best learned offline
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a simple 2-way replication system of a traditional database…

Primary Standby

Writes
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P S

S	  is	  dead,	  need	  
to	  trigger	  new	  

replica

P	  is	  dead,	  need	  to	  
promote	  myself

P’
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improved Replication: quorum

Replica

Replica

WritesReplica

Quorum: Successful write on a majority 



Not so easy..

Replica B

Replica C

Writes from 
client AReplica A

Replica D

New member in the 
group

Should I continue to serve reads?  
Should I start a new quorum?

Replica E Replica F

Reads and 
Writes from 

client B

Classic Split Brain Issue in Replicated systems leading to lost writes!
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Building correct distributed systems is not straight forward..

• How do you handle replica failures? 
• How do you ensure there is not a parallel 

quorum? 
• How do you handle partial failures of replicas? 
• How do you handle concurrent failures?



correctness is  hard, but necessary



Formal Methods



Formal Methods

to minimize bugs, we must have a precise 
description of the design



Formal Methods

code is too detailed

how would you express partial 
failures or concurrency?

design documents and diagrams are vague & imprecise



Formal Methods

law of large numbers is your friend, 

so design for scale

       until you hit large numbers



@ksshams@swami_79

TLA+ to the rescue?
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PlusCal 
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formal methods are  necessary 

but not sufficient..
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forget to test - no, serious    ..don’t ly



embrace failure and don’t be surprised

simulate failures at 
unit test level

fault injection testing 

 datacenter testing 
network brown out testing

scale testing 



testing is a lifelong journey
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testing is necessary 
but not sufficient..
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release cycle

gamma 
simulate real world

one box 
does it work?

phased deployment  
treading lightly 

monitor  
does it still work?
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Canaries
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Alarms
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Monitor customer behavior
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measuring customer experience is key

don’t be satisfied by average - look at 99 percentile
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understand the scaling dimensions
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understand how your service will be abused
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let’s see these rules in action through a true story
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we were building distributed systems all over amazon.com
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we needed a uniform and correct way to do consensus..
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so we built a paxos lock  library service
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such a service is so much more useful than just leader election..

it became a distributed state store
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such a service is so much more useful than just leader election..

or a distributed state store

wait wait.. you’re telling me if I poll, 
 I can detect node failure?
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we acted quickly - and scaled up our entire fleet with more 
nodes

doh!!!!

we slowed consensus...
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understand the scaling dimensions

& scale them independently...
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a lock service has 3 components..
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understand 
scaling dimensions

observe 
how service is used 

!

scalability over features 
strive   

for correctness 

relentlessly    
test

monitor    
like a hawk
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Thank You!

@swami_79

@kshams


