
@ksshams@swami_79

NoSQL like There is No Tomorrow

Swaminathan Sivasubramanian
GM, NoSQL

Khawaja
Head of Engineering, NoSQL

Swami

@ksshams@swami_79

how can you build your own DynamoDB Scale service?

@ksshams@swami_79

let’s start with a story about a
little company called amazon.com

@ksshams@swami_79

once upon a time...
(in 2000)

episode 1

@ksshams@swami_79

a few thousand miles away...
(seattle)

@ksshams@swami_79

amazon.com - a rapidly growing Internet based
retail business relied on relational databases

@ksshams@swami_79

we had 1000s of independent services

@ksshams@swami_79

each service managed its state in RDBMs

@ksshams@swami_79

RDBMs are actually kind of cool

@ksshams@swami_79

first of all... SQL!!

@ksshams@swami_79

so it is easier to query..

@ksshams@swami_79

easier to learn

@ksshams@swami_79

as versatile as a swiss army knife

complex queries key-value access

transactionsanalytics

@ksshams@swami_79

RDBMs are too similar to
Swiss Army Knives

@ksshams@swami_79

but sometimes.. swiss army knifes..
can be more than what you bargained for

@ksshams@swami_79

partitioning

easy
re-partitioning

hard..

@ksshams@swami_79

so we bought
bigger boxes...

@ksshams@swami_79

Q4 was hard-work at Amazon

benchmark
new hardware

migrate to new
hardware

repartition
databases

pray
...

@ksshams@swami_79

RDBMs availability challenges..

@ksshams@swami_79

then.. (in 2005)

episode 2

@ksshams@swami_79

amazon dynamo
predecessor to dynamoDB

specialist tool :

•limited querying capabilities

•simpler consistency

replicated DHT with consistent hashing
optimistic replication
“sloppy quorum”
anti-entropy mechanism
object versioning

@ksshams@swami_79

dynamo had many benefits

• higher availability
• we traded it off for eventual consistency  

• incremental scalability
• no more repartitioning
• no need to architect apps for peak
• just add boxes 

• simpler querying model ==>> predictable performance

@ksshams@swami_79

but dynamo was not perfect...

lacked strong consistency

@ksshams@swami_79

but dynamo was not perfect...

scaling was easier, but...

@ksshams@swami_79

but dynamo was not perfect...

steep learning curve

@ksshams@swami_79

but dynamo was not perfect...

dynamo was a product ... ==>> not a service...

@ksshams@swami_79

then.. (in 2012)

episode 3

@ksshams@swami_79

“Even though we have years of experience with large, complex
NoSQL architectures, we are happy to be finally out of the
business of managing it ourselves.” - Don MacAskill, CEO

• NoSQL database
• fast & predictable performance
• seamless scalability
• easy administration

DynamoDB

@ksshams@swami_79

build services not software!!

@ksshams@swami_79

amazon.com’s experience with services

@ksshams@swami_79

how do you create a successful service?

@ksshams@swami_79

with great services, comes great responsibility

@ksshams@swami_79

DynamoDB Goals and Philosophies

never compromise on durability

scale is our problem

easy to use

scale in rps
consistent and low latencies

@ksshams@swami_79

Architect

Te
st

M
onitor

G
o

a
ls

Deploy

D
e

ve
lo

p
Customer

@ksshams@swami_79

Architect

Te
stM

onitor

G
o

a
ls

Customer

Deploy

D
e

ve
lo

p

@ksshams@swami_79

Sacred Tenets in Services

plan for success - plan for scalability

don’t compromise durability for performance

plan for failures - fault -tolerance is key

consistent performance is important

design - think of blast radius

insist on correctness

@ksshams@swami_79

fault tolerance is a lesson best learned offline

@ksshams@swami_79

a simple 2-way replication system of a traditional database…

Primary Standby

Writes

@ksshams@swami_79 @ksshams@swami_79

P S

S	 is	 dead,	 need	
to	 trigger	 new	

replica

P	 is	 dead,	 need	 to	
promote	 myself

P’

@ksshams@swami_79 @ksshams@swami_79

improved Replication: quorum

Replica

Replica

WritesReplica

Quorum: Successful write on a majority

Not so easy..

Replica B

Replica C

Writes from
client AReplica A

Replica D

New member in the
group

Should I continue to serve reads?
Should I start a new quorum?

Replica E Replica F

Reads and
Writes from

client B

Classic Split Brain Issue in Replicated systems leading to lost writes!

@ksshams@swami_79

Building correct distributed systems is not straight forward..

• How do you handle replica failures?
• How do you ensure there is not a parallel

quorum?
• How do you handle partial failures of replicas?
• How do you handle concurrent failures?

correctness is hard, but necessary

Formal Methods

Formal Methods

to minimize bugs, we must have a precise
description of the design

Formal Methods

code is too detailed

how would you express partial
failures or concurrency?

design documents and diagrams are vague & imprecise

Formal Methods

law of large numbers is your friend,

so design for scale

 until you hit large numbers

@ksshams@swami_79

TLA+ to the rescue?

@ksshams@swami_79

PlusCal

@ksshams@swami_79

formal methods are necessary

but not sufficient..

@ksshams@swami_79

A
rc

h
it

e
c

t

Test

M
onit

or

Goals

customer D
e

p
lo

yDevelo
p

@ksshams@swami_79

forget to test - no, serious ..don’t ly

embrace failure and don’t be surprised

simulate failures at
unit test level

fault injection testing

 datacenter testing
network brown out testing

scale testing

testing is a lifelong journey

@ksshams@swami_79

testing is necessary
but not sufficient..

@ksshams@swami_79

Architect

Te
st

M
onitor

G
oals

Customer

Deploy

D
e

ve
lo

p

@ksshams@swami_79

release cycle

gamma
simulate real world

one box
does it work?

phased deployment
treading lightly

monitor
does it still work?

@ksshams@swami_79

Canaries

@ksshams@swami_79

Alarms

@ksshams@swami_79

Monitor customer behavior

A
rc

hi
te

ct

Te
st

Monitor
G

o
a

ls

Customer
D

ep
lo

y

Develop

@ksshams@swami_79

measuring customer experience is key

don’t be satisfied by average - look at 99 percentile

@ksshams@swami_79

understand the scaling dimensions

@ksshams@swami_79

understand how your service will be abused

@ksshams@swami_79

let’s see these rules in action through a true story

@ksshams@swami_79

we were building distributed systems all over amazon.com

@ksshams@swami_79

we needed a uniform and correct way to do consensus..

@ksshams@swami_79

so we built a paxos lock library service

@ksshams@swami_79

such a service is so much more useful than just leader election..

it became a distributed state store

@ksshams@swami_79

such a service is so much more useful than just leader election..

or a distributed state store

wait wait.. you’re telling me if I poll,
 I can detect node failure?

@ksshams@swami_79

we acted quickly - and scaled up our entire fleet with more
nodes

doh!!!!

we slowed consensus...

@ksshams@swami_79

understand the scaling dimensions

& scale them independently...

@ksshams@swami_79

Leader Election
Fa

ilu
re

 N
ot

ifi
ca

tio
n

State Store

a lock service has 3 components..

@ksshams@swami_79

Leader Election
Fa

ilu
re

 N
ot

ifi
ca

tio
n

State Store

they must be scaled independently..

@ksshams@swami_79

Leader Election
Fa

ilu
re

 N
ot

ifi
ca

tio
n

State Store

they must be scaled independently..

@ksshams@swami_79

Leader ElectionFa
ilu

re
 N

ot
ifi

ca
tio

n

State Store

they must be scaled independently..

@ksshams@swami_79

understand
scaling dimensions

observe
how service is used

!

scalability over features
strive

for correctness

relentlessly
test

monitor
like a hawk

@ksshams@swami_79

Thank You!

@swami_79

@kshams

