facebook

facebook

Facebook News Feed Social data at scale

Serkan Piantino Facebook NYC 6/18/2012

- Morks at Facebook
- # Studied Computer Science at Carnegie Mellon University
- il Lives in New York, New York
- ★ From Greenwich, Connecticut

About

Photos 480

wark Jersey City

New York Sports Center at Che...

Subscribers Map 475

Employers

Facebook

Oct 2007 to present · Palo Alto, California

- News Feed with Boz and 8 others Nov 2007 to present I built News Feed again
- Feed Ranking with Romain Thibaux and 3 others
- Chat with Dan Hsiao
- Simplicity with Jared Morgenstern Show all (7)

History by Year

⚠ Left Job at Bridgewater Associates Started Working at Bridgewater Associates Graduated from Carnegie Mellon University 2000 Graduated from John Jay High School Graduated from Greenwich High School

Agenda

- 1 Feed Basics
- 2 Infrastructure Overview
- 3 Deep Dive into Data Storage
- 4 Centrifuge and Exported Tech
- 5 Key Points

Feed Basics

What's the job?

- Fetch recent activity from all your friends
- Gather it in a central place
- Group into stories
- Rank stories by relevance
- Serialize the results

The Scale

Homepage views and feed queries

Moving content to your friends

Megafeed

Broadcast writes to your friends

Multifeed

Multi-fetch and aggregate stories at read time

Chose Multifeed

- Write amplification makes the storage needs expensive in Megafeed
- Developing with read-time aggregation is flexible
- Memory and network easier to engineer around
- Never have huge fan-out write to do, only bounded (<10k) fan-out read

The Architecture

Challenges for another day

- Multi-region
- Pushing new code
- Ranking
- Failure/Disaster Recovery

Today: Focus on Leaf Nodes

- In-memory (mostly) databases
- Do ~40 requests per feed query
- About 50% of the total LOC

Storing Feed

Leaf node indexes

- Must store a number of users on each leaf
- Once we find a user, we want to scan his/her activity in time order
- Want to have an easy way of adding new activity without locking

Most natural data structure is a hashtable to a linked list

First Version

- Use basic STL containers
- stl::unordered_map<int64_t, list<action*>>
- Lots of overhead
 - Storage overhead due to internal structures, alignment
 - Tons of pointer dereference, cache invalidation
- Memory fragmentation, so CPU usage trends upward
- Memory leakage leading to process restarts

A Few Tweaks

- Boost:multi_index_container
- JEMalloc (c/o) Jason Evans
- Slowed memory leakage quite a bit
- Boost library performs basically as well as stl with more syntactic niceness

New Idea: Memory Pools

- Allocate a huge array once (directly via malloc)
- Round robin insert actions into it
- Fixes memory leaks outside of index structure
- Still use stl for index structures
- Can "scan" for spaces, use more complicated than round robin allocator (e.g. keep at least 2 actions per user)
- Requires fixed size actions

Moore's Law to the rescue?

- We're limited on total data size by how much data can be "local"
 - (i.e. within a single rack)
- Memory footprint of servers increases over time, but we don't retrofit
- Total data and query volume triples each year
 - User growth
 - Engagement growth
 - New features, Zuck's Law
- Increasing focus on "needy" users. Few friends, less recent activity

Adding Persistent Storage

- Flash SSD technology has continuously matured
- Read latency and throughput about 10% of main RAM
- Sizes of 1TB or more
- Persistent!
- How do we incorporate this into our design?

Linux Internals

Linux Internals

- Under the hood, all memory is managed through the mapping table
- Not all pages are mapped to physical RAM
 - Can be unmapped to the process (SEGV)
 - Can be unassigned to any physical pages (page fault)
 - Can be mapped to a page that resides on disk (swap file)
 - Can be mapped to another file (via mmap())

Early Thoughts

- Linux provides a mechanism for mapping data on disk to RAM
- · Will use it's own structures for caching pages, syncing writes
- What if we wrote everything on persistent flash and mmapped the whole thing?
- Sounds ideal let the kernel do the work of picking pages to keep in RAM, when to flush changes to disk
- · If the process crashes, restart and mmap yourself back to life

In Reality...

- Syncs written pages aggressively
- Optimized for spinning disks, not flash
 - Avoids concurrency
 - Optimistic read-ahead
 - Prefers sequential writes
- When the kernel does something, it tends to grab locks. End up with unresponsive servers during syncs
- But.. mmap, madvise etc. provide enough flexibility to manage this ourselves

Next Generation

- Mmap large chunks (~1GB) of address space
- Some are volatile and writable, others are persistent and read only
- Do your own syncing of a volatile chunk to persistent chunk
- Keep a separate index into the first action by a user (in a volatile chunk) and linked list down the rest of the way
- Write variable sized actions if you want
- When you run out of space, just unmap/delete old data, and set a global limit so you know not to follow pointers off the end

Tauren Storage

Opening Up

- Lots of products at Facebook look like feed, need fast graph reads
- Abstract Tauren into a c++ template
 - Stored structure T
 - Index key I
 - Order key O
- Assumes things come in roughly sorted by order key
- Get all the snapshots, performance, etc. for free
- Used on a number of projects at Facebook

Let's do better

- We are unsatisfied
- One giant log file seems unsophisticated
- If we move to disk we need better locality
- Not everything has inserts already roughly in order
- Let's support simple keys/values

Centrifuge

- Store stuff in RAM in a big priority queue (b-tree actually)
- Store stuff on disk in a big sorted file
- Periodically merge the ram contents with the file
- Single key space things can come in any order and still be sorted on disk
- This set forms a single FMap structure.
- Make your own decision about what to keep
- Hoping to Open Source soon

Key Points

Centrifuge

- We find the Multifeed approach to be more flexible, manageable
- Feed is not that much code
 - By using thrift, SMC, other FB infra we have very little glue to write
- As a result, we'd rewrite things even without immediate need
- Directly using the kernel helps a lot. Good code in there.
- We wouldn't necessarily have written from scratch today
 - Redis
 - LevelDB

facebook

Thank You!

facebook

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0