

Facebook News Feed
Social data at scale

Serkan Piantino

Facebook NYC

6/18/2012

1 Feed Basics

2 Infrastructure Overview

3 Deep Dive into Data Storage

4 Centrifuge and Exported Tech

5 Key Points

Agenda

Feed Basics

What’s the job?

▪ Fetch recent activity from all your

friends

▪ Gather it in a central place

▪ Group into stories

▪ Rank stories by relevance

▪ Serialize the results

The Scale

99.999%

Average query success

rate

60 ms

Average latency

10 billion / day

Homepage views and feed

queries

Moving content to your friends

Megafeed

Broadcast writes to your friends

Multifeed

Multi-fetch and aggregate stories at read time

Chose Multifeed

▪ Write amplification makes the storage needs expensive in Megafeed

▪ Developing with read-time aggregation is flexible

▪ Memory and network easier to engineer around

▪ Never have huge fan-out write to do, only bounded (<10k) fan-out read

The Architecture

Leaf

Aggregator

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Leaf

Queries

Frontend Tier

Challenges for another day

▪ Multi-region

▪ Pushing new code

▪ Ranking

▪ Failure/Disaster Recovery

Today: Focus on Leaf Nodes

▪ In-memory (mostly) databases

▪ Do ~40 requests per feed query

▪ About 50% of the total LOC

Storing Feed

Leaf node indexes

▪ Must store a number of users on each leaf

▪ Once we find a user, we want to scan his/her activity in time order

▪ Want to have an easy way of adding new activity without locking

▪ Most natural data structure is a hashtable to a linked list

First Version

▪ Use basic STL containers

▪ stl::unordered_map<int64_t, list<action*> >

▪ Lots of overhead

▪ Storage overhead due to internal structures, alignment

▪ Tons of pointer dereference, cache invalidation

▪ Memory fragmentation, so CPU usage trends upward

▪ Memory leakage leading to process restarts

A Few Tweaks

▪ Boost:multi_index_container

▪ JEMalloc (c/o) Jason Evans

▪ Slowed memory leakage quite a bit

▪ Boost library performs basically as well as stl with more syntactic

niceness

New Idea: Memory Pools

▪ Allocate a huge array once (directly via malloc)

▪ Round robin insert actions into it

▪ Fixes memory leaks outside of index structure

▪ Still use stl for index structures

▪ Can “scan” for spaces, use more complicated than round robin

allocator (e.g. keep at least 2 actions per user)

▪ Requires fixed size actions

Moore’s Law to the rescue?

▪ We’re limited on total data size by how much data can be “local”

▪ (i.e. within a single rack)

▪ Memory footprint of servers increases over time, but we don’t retrofit

▪ Total data and query volume triples each year

▪ User growth

▪ Engagement growth

▪ New features, Zuck’s Law

▪ Increasing focus on “needy” users. Few friends, less recent activity

Adding Persistent Storage

▪ Flash SSD technology has continuously matured

▪ Read latency and throughput about 10% of main RAM

▪ Sizes of 1TB or more

▪ Persistent!

▪ How do we incorporate this into our design?

Linux Internals

Stack

Heap

Kernel

Kernel Page Table

Virtual Address Space Physical RAM

Linux Internals

▪ Under the hood, all memory is managed through the mapping table

▪ Not all pages are mapped to physical RAM

▪ Can be unmapped to the process (SEGV)

▪ Can be unassigned to any physical pages (page fault)

▪ Can be mapped to a page that resides on disk (swap file)

▪ Can be mapped to another file (via mmap())

Early Thoughts

▪ Linux provides a mechanism for mapping data on disk to RAM

▪ Will use it’s own structures for caching pages, syncing writes

▪ What if we wrote everything on persistent flash and mmapped the

whole thing?

▪ Sounds ideal – let the kernel do the work of picking pages to keep in

RAM, when to flush changes to disk

▪ If the process crashes, restart and mmap yourself back to life

In Reality…

▪ Syncs written pages aggressively

▪ Optimized for spinning disks, not flash

▪ Avoids concurrency

▪ Optimistic read-ahead

▪ Prefers sequential writes

▪ When the kernel does something, it tends to grab locks. End up with

unresponsive servers during syncs

▪ But.. mmap, madvise etc. provide enough flexibility to manage this

ourselves

Next Generation

▪ Mmap large chunks (~1GB) of address space

▪ Some are volatile and writable, others are persistent and read only

▪ Do your own syncing of a volatile chunk to persistent chunk

▪ Keep a separate index into the first action by a user (in a volatile

chunk) and linked list down the rest of the way

▪ Write variable sized actions if you want

▪ When you run out of space, just unmap/delete old data, and set a

global limit so you know not to follow pointers off the end

Tauren Storage

▪ Sync at your leisure

▪ Variable sized actions – no alignment

▪ Know where page is stored by pointer

▪ Simply throw away/unmap old data

▪ Decide when/if to hit flash/disk

▪ Bonus: spawn a sub process and snapshot

volatile chunks to disk

Opening Up

▪ Lots of products at Facebook look like feed, need fast graph reads

▪ Abstract Tauren into a c++ template

▪ Stored structure T

▪ Index key I

▪ Order key O

▪ Assumes things come in roughly sorted by order key

▪ Get all the snapshots, performance, etc. for free

▪ Used on a number of projects at Facebook

Let’s do better

▪ We are unsatisfied

▪ One giant log file – seems unsophisticated

▪ If we move to disk we need better locality

▪ Not everything has inserts already roughly in order

▪ Let’s support simple keys/values

Centrifuge

▪ Store stuff in RAM in a big priority queue (b-tree actually)

▪ Store stuff on disk in a big sorted file

▪ Periodically merge the ram contents with the file

▪ Single key space - things can come in any order and still be sorted

on disk

▪ This set forms a single FMap structure.

▪ Make your own decision about what to keep

▪ Hoping to Open Source soon

Key Points

Centrifuge

▪ We find the Multifeed approach to be more flexible, manageable

▪ Feed is not that much code

▪ By using thrift, SMC, other FB infra we have very little glue to write

▪ As a result, we’d rewrite things even without immediate need

▪ Directly using the kernel helps a lot. Good code in there.

▪ We wouldn’t necessarily have written from scratch today

▪ Redis

▪ LevelDB

Thank You!

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

